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We consider the Boltzmann equations for mixtures of Maxwell gases. It is shown that in
certain limiting case the equations admit self-similar solutions that can be constructed in
explicit form. More precisely, the solutions have simple explicit integral representations.
The most interesting solutions have finite energy and power like tails. This shows that
power like tails can appear not just for granular particles (Maxwell models are far from
reality in this case), but also in the system of particles interacting in accordance with
laws of classical mechanics. In addition, non-existence of positive self-similar solutions
with finite moments of any order is proven for a wide class of Maxwell models.
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To Carlo Cercignani, on his 65th Birthday

1. INTRODUCTION

In this paper we continue the study of self-similar solutions for various physical
systems described by the Boltzmann equations with Maxwell collision kernels.(1–4)

It was understood long ago(5) that the key mathematical tool for such equations
is the Fourier transform in the velocity space. A detailed analytical theory of the
classical spatially homogeneous Boltzmann equation for Maxwell molecules was
mainly completed in the 80’s (see(6) for a review). There were almost no new
essential results in this field during the 90’s, except for some interesting pure
mathematical publications, in particular.(7,8)
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Quite unexpectedly, Maxwell models again became the subject of many
publications in the beginning of the 2000’s. The starting point was an idea to
use such models for descriptions of inelastic (granular) gases. Inelastic Maxwell
models were introduced in 2000(1) (see also(9) for the one dimensional case).
It was clear that all the analytical techniques previously developed for classical
Maxwell models can be used in the inelastical case almost without changes.
Many references to papers published in 2000’s by physicists can be found in the
book.(10)

One interesting result (absent in the elastic case) was the appearance of self-
similar solutions with power like tails. It was conjectured in(11) and later proved
in,(3,4) that such solutions represent asymptotic states for a wide class of initial
data. On the other hand, inelastic Maxwell models are just a rough approximation
for the inelastic hard sphere model and they give usually wrong answers to the
question of large velocity asymptotics (a mathematically rigorous study of such
asymptotics for a hard sphere model can be found in(12)).

Some new results in the theory of classical (elastic) Boltzmann equation for
Maxwell molecules were also recently published in:(2,3) Self-similar solutions (two
of which were found in explicit form) and the proof that such solutions represent a
large time asymptotics for initial data with infinite energy, clarification of the old
Krook-Wu conjecture,(13) etc. It is clear that both elastic and inelastic Maxwell
models must be studied from a unified point of view.

An interesting question arises in connection with power-like tails for high
velocities: Is it possible to observe a similar effect (an appearance of power-like
tails from initial data with exponential tails) in the system of particles interacting
according to laws of classical mechanics (i.e. without inelasticity assumption)?
This is the main question for the present paper.

We shall see below that the answer to this question is probably affirmative.
The key idea is to consider a mixture of classical Maxwell gases and to find a
corresponding limiting case for which such behavior can be in principle observed.

The paper is organized as follows. First we consider the Boltzmann equation
for Maxwell mixtures and pass to the Fourier representation (Sec 2). Then we
study a binary mixture and show that corresponding equations formally admit a
class of self-similar solutions (Sec 3). In order to simplify the problem we pass to
the limit that corresponds to a one component gas in the presence of the thermostat
with fixed temperature T (Sec 4). The general problem can be reduced to the case
T = 0 (cold thermostat). Then we consider the case of the model cross section
(pseudo-Maxwell molecules with isotropic scattering) and construct a family of
exact self-similar solutions (Sec 5). These solutions are studied in detail in Sections
6 and 7. The new solutions have a lot in common with exact solutions from.(2) They,
however, have finite energy and therefore are more interesting for applications.

We did not try to prove neither existence of such solutions in the more
general case nor to show that they are large time asymptotic states for a wide
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class of initial data. This is done, as a particular case, in our paper(14) jointly with
C. Cercignani.

Instead, we prove in Section 8 a general statement (applied, in particular, to
inelastic Maxwell models and elastic models in the cold thermostat) concerning
non-existence of positive self-similar solutions with finite moments of any order.

Thus it is sufficient in many cases to prove that such positive solution does
exist, then it always has just a finite number of even integer moments for all values
of parameters of the equation.

2. MAXWELL MIXTURES

We consider a spatially homogeneous mixture of N ≥ 2 Maxwell gases.
Each component of the mixture is characterized by the molecular mass mi and
the distribution function fi = fi (v, t), i = 1, . . . , N , where v ∈ R

3 and t ∈ R+
denote velocity and time respectively. The distribution functions are normalized
in such a way that ∫

R3

dv fi (v, t) = ρi

where ρi is the number density of the i th component of the mixture. Note that the
quantities ρi , i = 1, . . . , N are preserved in time.

The interaction between particles is described by the matrix of Maxwell type
differential cross-sections

σi j (|u|, θ ) = 1

|u|gi j (cos θ ), i, j = 1, . . . , N .

where |u| is the relative speed of colliding particles, θ ∈ [0, π ] is the scattering
angle.

In case of “true” Maxwell molecules, i.e. particles interacting with potentials

Ui j = αi j

r4
, αi j > 0,

where r > 0 denotes a distance between interacting particles, the following for-
mulas are valid(15)

gi j (cos θ ) =
(

αi j

mi j

)1/2

g(cos θ ), mi j = mi m j

mi + m j
, i, j = 1, . . . , N .

We shall assume below the same kind of formulas for gi j (cos θ ) with an
arbitrary function g(cos θ ) (pseudo-Maxwell particles).

The corresponding system of Boltzmann equations reads

∂ fi

∂t
=

N∑
j=1

∫
R3×S2

dv∗ dω gi j

(
u · ω

|u|
)

[ fi (v
′) f j (v

′
∗) − fi (v) f j (v∗)] (2.1)
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where the pair (v′, v′
∗) are pre-collisional velocities

v′ = (miv + m jv∗ + m j |u|ω)(mi + m j )
−1,

v′
∗ = (miv + m jv∗ − mi |u|ω)(mi + m j )

−1; i, j = 1, . . . , N (2.2)

with respect to the post-collisional velocities (v, v∗).
The Fourier transform of Eqs. (2.1)–(2.2), for

ϕ j (k, t) =
∫

R3

dv f j (v, t) e−ik·v; k ∈ R
3

leads to equations(6)

∂ϕi

∂t
=

N∑
J=1

S(ϕi , ϕ j ) (2.3)

where

S(ϕi , ϕ j ) =
∫

S2

dω gi j

(
k · ω

|k|
)

[ϕi (k
+
i j , t) ϕ j (k−

i j , t) − ϕi (k, t) ϕ j (0, t)] (2.4)

where

k+
i j = mi k + m j |k|ω

mi + m j
, k−

i j = m j

mi + m j
(k − |k|ω)

so,

k = k+
i j + k−

i j ; i, j = 1, . . . , N .

We note that

(k−
i j )

2 = 4

(
m j

mi + m j

)2

|k|2s, |k+
i j |2 = |k|2

(
1 − 4

mi m j

(mi + m j )2
s

)
,

where

s = 1

2

(
1 − k · ω

|k|
)

, s ≤ 1.

Then, we consider isotropic solutions of Eqs. (2.3)–(2.4)

ϕi (k, t) = ϕ̃i

( |k|2
2mi

, t

)
,

and obtain

∂

∂t
ϕ̃i

( |k|2
2mi

, t

)
=

N∑
j=1

S̃(ϕ̃i , ϕ̃ j ), (2.5)



Boltzmann Equations For Mixtures of Maxwell Gases: Exact Solutions 501

with

S̃(ϕ̃i , ϕ̃ j ) =
∫ 1

0
dsGi j (s)

[
ϕ̃i

( |k|2
2mi

(1 − βi j s), t

)

ϕ̃ j

( |k|2
2m j

βi j
m j

mi
s, t

)
− ϕ̃i

( |k|2
2mi

, t

)
ϕ(0, t)

]

and

βi j = 4mi m j

(mi + m j )2
, Gi j = 4πgi j (1 − 2s)

for i, j = 1, . . . , N . We omit the tildes and denote

x = |k|2
2mi

in each of Eq. (2.5). Then the resulting set of equations becomes

∂

∂t
ϕi (x, t) =

N∑
j=1

∫ 1

0
dsGi j (s)[ϕi (x(1 − βi j s))ϕ j (xβi j s) − ϕi (x)ϕ j (0)]

where

0 ≤ βi j = 4
mi m j

(mi + m j )2
≤ 1, βi j = β j i , βi i = 1, i, j = 1, . . . , N .

Therefore, the most general system of isotropic Fourier transformed Boltz-
mann equations for Maxwell mixtures reads

∂ϕi

∂t
=

N∑
j=1

γi j 〈ϕi ((1 − βi j s)x)ϕ j (βi j s x) − ϕi (x)ϕ j (0)〉, (2.6)

where, for any function A(s), s ∈ [0, 1],

〈A(s)〉 =
∫ 1

0
A(s)G(s)ds, G(s) = 4πg(1 − 2s),

and

γi j =
√

αi j

mi j
, βi j = 4m2

i j

mi m j
, mi j = mi m j

mi + m j
; i, j = 1, . . . , N . (2.7)

3. BINARY MIXTURE

We consider a special case N = 2 in Eqs. (2.6), (2.7) and denote

m1 = M, m2 = m, ϕ1 = ρ1ϕ(x, t), ϕ2 = ρ2ψ(x, t),
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such that ϕ(0, t) = ψ(0, t) = 1. Then, we obtain

ϕt = ρ1

(
2α11

M

)1/2

〈ϕ, ϕ〉 + ρ2

(
α12

m12

)1/2

〈ϕ,ψ〉β

ψt = ρ2

(
2α22

m

)1/2

〈ψ,ψ〉 + ρ1

(
α12

m12

)1/2

〈ψ, ϕ〉β (3.1)

where

β = 4m M

(m + M)2
, m12 = m M

m + M
,

〈ϕ,ψ〉β =
∫ 1

0
ds G(s){ϕ((1 − βs)x, t)ψ(βsx, t) − ϕ(x, t)ψ(0, t)}

following the notation of (2.7), and thus,

〈ϕ, ϕ〉 = 〈ϕ, ϕ〉1, 〈ψ,ψ〉 = 〈ψ,ψ〉1.

We recall the connection of functions ϕ(x, t) and ψ(x, t) with corresponding
solutions f1,2(|v|, t) of the Boltzmann Eq. (2.1)

ρ1ϕ

( |k|2
2M

, t

)
=

∫
R3

dv f1(|v|, t)e−ik·v,

ρ2ψ

( |k|2
2m

, t

)
=

∫
R3

dv f2(|v|, t)e−ik·v

The usual definition of kinetic temperatures is given by equalities

Ti = mi

3ρi

∫
R3

dv|v|2 fi (|v|, t), i = 1, 2.

Then, one can easily verify that

T1(t) = −ϕ′(0, t), T2(t) = −ψ ′(0, t).

where the primes denote derivatives on x. The equilibrium temperatures Teq of the
binary mixture reads

Teq = ρ1T1 + ρ2T2

ρ1 + ρ2
= const.

The relaxation process in the binary mixture described by Eq. (3.1) leads to
usual Maxwell asymptotics states

ϕ →t→∞ exp(−Teq x), ψ →t→∞ exp(−Teq x).
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By using Eq. (3.1), one can easily verify (at the formal level) that

dT1

dt
= −λρ2(T1 − T2),

dT2

dt
= −λρ1(T2 − T1),

λ =
(

α12

m12

)1/2

β〈s〉, 〈s〉 =
∫ 1

0
ds G(s)s.

Therefore,

T1(t) = Teq + 


ρ1
e−�t , T2(t) = Teq + 


ρ2
e−�t ,


 = ρ1ρ2

ρ1 + ρ2
(T1(0) − T2(0)), � = λ(ρ1 + ρ2). (3.2)

It is easy to see that Eq. (3.1) formally admit the following class of self-similar
solutions

ϕ(x, t) = �(x e−�t ) e−Teq x , ψ(x, t) = �(x e−�t )e−Teq x

It is, however, difficult to investigate such solutions (in particular, to prove
that corresponding distribution functions are positive) in the most general case.
Therefore we consider a simplified problem.

4. WEAKLY COUPLED BINARY MIXTURE

If the masses M and m are fixed, then Eq. (3.1) contain five positive parameters
pi , αi j , j = 1, 2. We shall consider below a special limiting case of Eq. (3.1)
(weakly interacting gases) such that

α12 → 0, ρ2 → ∞, ρ2
√

α12 = const. (4.1)

We assume that the other parameters ρ1, α11 and α22 remain constant and
denote

ϕ(x, t) = ϕ̃(x, t̃), ψ(x, t) = ψ̃(x, t̃), t̃ = ρ1

(
2α11

M

)1/2

t, (4.2)

θ = ρ2

ρ1

(
α12 M

2α11m12

)1/2

= const.

Then we formally obtain (tildes are omitted below)

ϕt = 〈ϕ, ϕ〉 + θ〈ϕ,ψ〉β, 〈ψ,ψ〉 = 0, (4.3)

where it is assumed that the functions ϕ(x, t), ψ(x, t) and their time derivatives
remain finite in the limit (4.1). The limiting temperatures (see Eq. (3.2)) are given
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by the identities

T2(t) = T2(0) = Teq = const., and T1(t) = T2(0) + (T1(0) − T2(0))e−θβ〈s〉t

in the notation (4.2) (tildes are omitted).
Thus

< ψ,ψ >= 0, ψ(0, t) = 1, ψ ′(0, t) = −T2(0) ⇒ ψ(x, t) = e−T2(0)x ,

and we reduce Eq. (4.3) to the unique equation for ϕ(x, t)

∂ϕ

∂t
= 〈ϕ, ϕ〉 + θ〈ϕ, e−T2(0)x 〉β. (4.4)

The general case T2(0) > 0 can be reduced to the case T2(0) = 0 by substi-
tution

ϕ(x, t) = ≈
ϕ(x, t) exp(−T2(0)x).

Eq. (4.4) shows that, in the limiting case (4.1), the second component of the
mixture plays a role of a thermostat with the fixed temperature T2(0), moreover,
it is enough to consider the case T2(0) = 0 (cold thermostat). Then Eq. (4.4), in
explicit form, reads

∂ϕ

∂t
=

∫ 1

0
dsG(s){ϕ(sx)ϕ[(1 − s)x] + θϕ[(1 − βs)x] − ϕ(x)[ϕ(0) + θψ(0)]},

ϕ(0) = ψ(0) = 1, (4.5)

where the argument t of ϕ(x, t) is omitted.
We consider below Eq. (4.5) assuming that ϕ(|k|2, 0) is a characteristic func-

tion (Fourier transform of a probability measure in R
3). Then Eq. (4.5) describes

a homogeneous cooling process in the system of particles that interact between
themselves and with the cold thermostat. Though all interactions are elastic (at the
microlevel), such system has much in common with the gas of inelastic particles
considered in.(3,4) It was proved in these papers that the general inelastic Maxwell
model has the self-similar asymptotics in a certain precise sense. We conjecture
the same asymptotic property for solutions of Eq. (4.5) (see(14) for its proof). In
this paper we construct some explicit examples of self-similar solutions and show
that such solutions have power-like tails for large velocities.

5. EXACT SOLUTIONS IN THE FOURIER-LAPLACE

REPRESENTATION

We consider Eq. (4.5) with β = 1 (equal masses m = M = 1) and G(s) = 1
(isotropic scattering). Then Eq. (4.5) reads

∂ϕ

∂t
=

∫ 1

0
dsϕ[(1 − s)x][ϕ(sx) + θ ] − (1 + θ )ϕ(x), ϕ(0) = 1. (5.1)
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From the physical point of view, this is a model for a mixture of two weakly
interacting gases, which consist of “particles” with identical masses. One can
assume that the sorts of “particles” differ, say, by color.

Our goal is to describe a family of self-similar solutions of Eq. (5.1) such that

ϕ(x, t) = ψ(xe−µt ), ψ(x) ∼= 1 − ax p, x → 0, (5.2)

The parameters θ ≥ 0, p > 0 and µ ∈ R will be determined later. From now on x
denotes the self-similar variable. (The notation ψ(xe−µt ) should not be confused
with one for the function ψ(x, t) from Sections 3 and 4.)

Substituting Eq. (5.2) into Eq. (5.1) we obtain

µxψ ′(x) − (1 + θ )ψ(x) + 1

x
ψ ∗ (ψ + θ ) = 0,

ψ1 ∗ ψ2 =
∫ x

0
dyψ1(y)ψ2(x − y). (5.3)

This equation can be simplified by the use of the Laplace transform similarly
to.(2)

w(z) = L(ψ)(z) =
∫ ∞

0
ψ(x)e−zx , Re z > z0, (5.4)

provided |ψ(x)| < A exp(z0x), with some positive A and z0.
First, we recall properties of the Laplace transform

L(xψ) = −w′(z), L(x2ψ) = w′′(z) and L(ψ ′) = zw(z) − ψ(0),

and

L(x2ψ ′) = d2

dz2
(zw − ψ(0)) = (zw(z))′′.

Then we obtain the following equation for w(z):

µ(zw)′′ + (1 + θ )w′ + w

(
w + θ

z

)
= 0.

Next, we denote

u(z) = zw(z) =
∫ ∞

0
dx e−xψ

(
x

z

)
, (5.5)

so that the above equation is transformed to

µz2u′′ + (1 + θ )zu′ + u(u − 1) = 0. (5.6)

The next step is to simplify this equation by standard substitutions. We denote

z̃ = zq , u(z) = ũ(z̃), (5.7)
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and obtain the equation for ũ(z̃) (tildes are omitted)

µq2z2u′′ + q[1 + θ + µ(q − 1)]zu′ + u(u − 1) = 0.

Then, setting

u(z) = z2 y(z) + B, B = const., (5.8)

we obtain the following equation for y(z):

µq2z4 y′′ + z4 y2 + αz3 y′ + βz2 y + B(B − 1) = 0, (5.9)

where the parameters α and β are given by the relations

α = q(5µq + 1 + θ − µ) ,

β = 2B − 1 + 4µq2 + 2q(1 + θ − µ)

Now, the parameters q and B can be chosen in such a way that α = β = 0.
Thus, we take

q = −1 + θ − µ

5µ
, B = 6µq2 + 1

2
,

and obtain that Eq. (5.9) is reduced to

µq2 y′′ + y2 + B(B − 1)

z4
= 0. (5.10)

This is the simplest standard form, for which Eq. (5.6) can be reduced in the
general case. Finally, Eq. (5.10) is of the Painlevé type if and only if B = 0 or
B = 1. Otherwise, it has moving logarithmic singularities and does not have any
“simple” nontrivial analytic solutions (this is just a repetition of arguments on a
similar equation considered in(2)).

Therefore we consider the two special cases. In both cases

θ = µ − 1 − 5µq. (5.11)

Case 1: B = 0, which implies

6µq2 = −1, so that y′′ = 6y2. (5.12)

Case 2: B = 1, which implies

6µq2 = −1, so that y′′ = −6y2. (5.13)

The general solution of the non-linear ODE y′′ = by2 is expressed in terms
of Weierstrass elliptic function. Similarly to,(2) we can show that just the simplest
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exact solutions, namely

Case 1: y(z) = (c1 + z)−2 and Case 2: y(z) = −(c2 + z)−2,

with constant c1 and c2, are solutions to Eqs. (5.12) and (5.13) respectively, that
lead to solutions of Eq. (5.6) satisfying appropriate boundary conditions at infinity.

Coming back to the original notation (see the transformations (5.7), (5.8)),
we obtain, therefore, two different exact solutions of Eq. (5.6)

Case 1: u(z) = (1 + c1z−q )−2 for 6µq2 = −1;

Case 2: u(z) = 1 − (1 + c2z−q )−2 for 6µq2 = −1. (5.14)

We have that, in both cases, the coupling constant θ must satisfy (5.11).
The constants c1 and c2 are determined by the boundary conditions as follows.

The given asymptotics in (5.2) for ψ(x), x → 0, leads to the asymptotics for u(z),
as defined in (5.5), at infinity

u(z) � 1 + b

z p
, z → ∞ ,

where b is a non-zero constant. Recalling that |ψ(x)| ≤ 1 for positive solutions of
the Boltzmann equation, we can assume, without loss of generality, that

u(z) � 1 + 1

z p
, z → ∞ . (5.15)

Then we obtain, for the above two cases in (5.14), the following formulas
satisfying the boundary condition (5.15) at infinity:

Case 1: q = p; u(z) =
(

1 + 1

2
z−p

)−2

, µ = − 1

6p2
;

θ = (3p − 1)(1 − 2p)

2p2
.

Case 2:q = − p

2
; u(z) = 1 − (1 + z p/2)−2, µ = 2

3p2
;

θ = (3p + 1)(2 − 1p)

3p2
. (5.16)

The result can be formulated in the following way.

Proposition 5.1. Eq. (5.1) has exact self-similar solutions (5.2) satisfying the
condition

ψ(x) � 1 − x p

�(p + 1)
, x → 0, p > 0,
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for the following values of the parameters θ (p) and µ(p):

1 :µ(p) = − 1

6p2
, θ (p) = (3p − 1)(1 − 2p)

6p2
;

2 :µ(p) = 2

3p2
, θ (p) = (3p + 1)(2 − p)

3p2
; (5.17)

The solutions of Eq. (5.1) are given by equalities

ψi (x) = L−1

[
ui (z)

z

]
, i = 1, 2, (5.18)

with u1,2(z) from Eq. (5.16), for cases 1 and 2 respectively.

The solutions have a physical meaning if, both, θ ≥ 0 and ψ
(

|k|2
2

)
is the

Fourier transform of a positive function (measure).
The first condition leads to inequalities 1

3 ≤ p ≤ 1
2 in the case 1, and to

0 ≤ p ≤ 2 in the case 2. The second condition will be discussed in the next
section.

6. DISTRIBUTION FUNCTIONS

First we evaluate the inverse Laplace transforms (5.18). In the case 1 we
obtain

ψi (x) = L−1

[
1

z

(
1 + z−p

2

)2
]

,
1

3
≤ p ≤ 1

2
.

The general formula from(17) leads to

ψ1(x) = �(2−1/px), �(x) = L−1

[
1

z
(1 + z−p)−2

]

= 2
sin pπ

pπ

∫ ∞

0
ds e−xs−1/p (1 + s cos pπ )

(1 + s2 + 2s cos pπ )2
. (6.1)

This case corresponds to

θ = (3p − 1)(1 − 2p)

6p2
(6.2)

in Eq. (5.1). We note that θ = 0 for p = 1
3 , 1

2 . Eq. (5.1) in such cases is the Fourier
transformed Boltzmann equation for one-component gas. The exact solutions (6.1)
with p = 1

2 , 1
3 were already obtained in.(2) Eq. (6.1) therefore yields a generaliza-

tion of these solutions to the case of binary mixture (with equal masses) provided
the parameter θ is given (for given p ∈ [1/3, 1/2]) in Eq. (6.2). The corresponding
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solutions of the Boltzmann equations are positive solutions with infinite energy.
All their properties can be studied in the same way as in.(2)

The case 2 is more interesting since it includes also solutions with finite
energy. The inverse Laplace transform

ψ2(x) = L−1

{
1

z

[
1 − 1

(1 + z p/2)2

]}

can be evaluated in the following way. We denote

�(x) = L−1

[
1

(1 + z p/2)2

]
,

then

ψ2(x) = 1 −
∫ x

0
dy�(y) =

∫ ∞

x
dy�(y),

∫ ∞

0
dy�(y) = 1. (6.3)

The function �(x) can be expressed through the integral

�(x) = 1

2π i

∫
C

dz exz

(1 + z p/2)2
, 0 < p ≤ 2

where the contour C lies around the negative half of the real axis (see(17) for
details).

Then we obtain

�(x) = 1

π

∫ ∞

0
dr e−r x A(r ),

where

A(x) = Im [1 + (re−iπ )p/2]−2 = 2r p/2(1 + r p/2 cos pπ

2 ) sin pπ

2

(1 + r p + 2r p/2 cos pπ

2 )2

Coming back to the function ψ2(x) (6.3), we obtain

ψ2(x) = 1

π

∫ ∞

0

dr e−r x A(r )

r
. (6.4)

The final result

ψ2(x) = 4 sin pπ

2

pπ

∫ ∞

0

ds(1 + s cos pπ

2 )

(1 + s2 + 2s cos pπ

2 )2
e−xs2/p

, 0 < p ≤ 2,

is obtained by substitution s = r p/2 in the integral (6.4).
We remind to the reader that the corresponding distribution function f (|v|, t),

that solves the Boltzmann equation, reads

f (|v|, t) = e3µt/2 F(|v|eµt/2), µ = 2

3p2
, (6.5)
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where

F[F] =
∫

R3

dvF(|v|)e−ik·v = ψ2

( |k|2
2

)
.

Noting that

e−T |k|2
2 = F[MT (|v|)], MT (|v|) = e− |v|2

2T

(2πT )3/2
,

we obtain the integral representation of F(|v|):

F(|v|) = 4 sin pπ

2

pπ

∫ ∞

0
ds

(1 + s cos pπ

2 )

(1 + s2 + 2s cos pπ

2 )2
Ms2/p (|v|). (6.6)

This function is obviously positive for 0 < p ≤ 1. We note that the solution (6.5)–
(6.6) corresponds to the value

θ = (3p + 1)(2 − p)

3p2

in Eq. (5.1).

7. SOLUTIONS WITH FINITE ENERGY

We consider in more detail the most interesting (for applications) case p = 1
in Eq. (6.6). Then

µ = 2

3
, θ = 4

3
, f (|v|, t) = et F(|v|et/3), (7.1)

where

F(|v|) = 4

π

∫ ∞

0
ds

exp(−|v|2/2s2)

(2πs2)3/2(1 + s2)2
. (7.2)

We denote

y = |v|2
2

, F(|v|) = (2π5)−1/2�(y), (7.3)

where

�(y) =
∫ ∞

0
dr

r2

(1 + r )2
e−ry = 1

y3

∫ ∞

0
dr

r2e−r

(1 + r
y )2

. (7.4)

Asymptotic expansion of �(y) for large positive y follows from integration of the
formal series (

1 + r

y

)−2

=
∞∑

n=0

(−1)n(n + 1)

(
r

y

)n

.
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Thus we obtain from Eq. (7.4)

�(y) � 1

y3

∞∑
n=0

(−1)n (n + 1)(n + 2)!

yn
, y → ∞ (7.5)

In order to describe a behavior of �(y) for small positive y we transform the
first integral in Eq. (7.4) in the following way

�(y) =
∫ ∞

1
dr

(r − 1)2

r2
e−(r−1)y = ey[E0(y) − 2E1(y) + E2(y)],

Em(y) =
∫ ∞

1
dr

e−ry

rm
.

Noting that

E0(y) = e−y

y
, E2(y) = e−y − yE1(y),

we obtain

�(y) = 1 + 1

y
− (2 + y)ey E1(y),

where

E1(y) =
∫ ∞

y
ds

e−s

s
=

∫ ∞

1
ds

e−s

s
+

∫ 1

y
ds

(e−s − 1)

s
− ln y.

We note that∫ ∞

1
ds

e−s

s
+

∫ 1

0
ds

(e−s − 1)

s
=

∫ ∞

0
ds e−s ln s = −γ,

where γ � 0, 577 is the Euler constant. Therefore

E1(y) = −(γ + ln y) +
∫ y

0
ds

(1 − e−s)

s

and

�(y) = 1 + 1

y
+ (2 + y)

[
ey(γ + ln y) −

∫ y

0
ds

(es − 1)

s

]
. (7.6)

Thus, the asymptotic equality (7.5) and the formula (7.6) describe the behav-
ior of the distribution function F(v) in (7.3), for large and small values of |v|. We
obtain

F(|v|) = 2

(
2

π

)5/2 1

|v|6
[

1 + O

(
1

|v|
)]

, |v| → ∞,
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F(|v|) = 21/2

π5/2

1

|v|2 [1 + 2|v|2 ln |v| + O(|v|2)], |v| → 0. (7.7)

All the exact solutions can be generalized to the case of the thermostat with
finite temperature T (see Eq. (4.4) with T2(0) = T ). Then Eq. (5.1) is replaced by
the following equation

∂ϕ

∂t
=

∫ 1

0
ds{ϕ(sx)ϕ[(1 − s)x] − ϕ(x)ϕ(0)}

+ θ

∫ 1

0
ds{ϕ[(1 − s)x]e−T sx − ϕ(x)},

ϕ(0) = 1.

This equation can be reduced to Eq. (5.1) by substitution

ϕ(x, t) = ϕ̂(x, t)e−T x .

The corresponding self-similar solutions read

ϕ(x, t) = ψ(xe−µt )e−T x ,

where ψ(x) satisfies Eq. (5.3).

8. SELF-SIMILAR SOLUTIONS AND POWER LIKE TAILS

We consider in this section a more general class of equations for the function
ϕ(x, t):

∂ϕ

∂t
=

∫ 1

0
dsG(s){ϕ(a(s)x)ϕ[b(s)x] − ϕ(x)ϕ(0)}

+ θ

∫ 1

0
ds H (s){ϕ[c(s)x] − ϕ(x)},

ϕ(0) = 1, (8.1)

with non-negative functions G(s), H (s), a(s), b(s) and c(s) with s ∈ [0, 1]. We
also assume that G(s), H (s) are integrable on [0, 1], and

a(s) ≤ 1, b(s) ≤ 1, c(s) ≤ 1; 0 ≤ s ≤ 1.

The function ϕ(x, t) is understood as the Fourier transform

ϕ(|k|2, t) =
∫

Rd

dv f (|v|, t) e−ik·v; k ∈ R
d , d = 1, 2, . . . , (8.2)

of a time dependent probability density f (|v|, t) ∈ R
d .
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Eq. (8.1) allows to consider from a unified point of view two different kind
of Maxwell models:

I Inelastic Maxwell models,(1,3) where

H (s) = 0, a(s) = sz2, b(s) = 1 − sz(2 − z),

z = 1 + e

2
, 0 ≤ e ≤ 1. (8.3)

II Maxwell mixtures described by Eq. (4.5), where

H (s) = θG(s), a(s) = s, b(s) = 1 − s, c(s) = 1 − βs. (8.4)

The condition of integrability of G(s) and H (s) can be easily weakened.
We do not do it here in order to simplify proofs. Our main goal in this section
is to prove, roughly speaking, that self-similar solutions (distribution functions
f (|v|, t) from Eq. (8.2)) have power-like tails. More precisely, we are going to
show that such distribution functions can not have finite moments of any order.

Eq. (8.1) admits (formally) a class of self-similar solutions

ϕ(x, t) = ψ(xe−µt ), µ > 0, (8.5)

where ϕ(x, t) satisfies the equation

−µxψ ′ =
∫ 1

0
dsG(s)[ψ(a(s)x)ψ((b(s)x) − ψ(x)]

+
∫ 1

0
ds H (s)[ψ(c(s)x) − ψ(x)],

ψ(0) = 1, µ > 0. (8.6)

The corresponding function f (|v|, t) ∈ R
d (see Eq. (8.2)) reads

f (|v|, t) = ed µt
2 F(|v|e µt

2 ), ψ(|k|2) =
∫

Rd

dvF(|v|)e−ik·v . (8.7)

Our goal is to prove the following general fact: if such a function F(|v|) ≥ 0
(generalized density of a probability measure in R

d ) does exists, then it can not
have finite moments of all orders. We assume the opposite and represent the
integral in Eq. (8.1) as a formal series

ψ(|k|2) =
∞∑

n=0

(−1)n

(2n)!
αn(d)mn|k|2n,

where

mn =
∫

Rd

dv F(|v|)|v|2n, n = 0, 1, . . . ;
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αn(1) = 1, αn(d) = 1

|Sd−1|
∫

Sd−1

dω(ω′ · ω)2n, if d ≥ 2.

where |Sd−1| is the usual measure of the unit sphere Sd−1 in R
d , ω′ ∈ Sd−1

is an arbitrary unit vector.
Hence we obtain

ψ(|k|2) =
∞∑

n=0

(−1)nψn
|k|2n

n!
,

ψ0 = 1, ψn = n!

(2n!)
αn(d) mn, n = 1, 2, . . . . (8.8)

The convergence of the Taylor series (8.8) is irrelevant for our goals. The
only important point is that ψ(x) is infinitely differentiable for all 0 ≤ x < ∞ (see
any textbook in probability theory, for example(16)) and

ψ (n)(0) = ψn > 0, n = 0, 1, . . . . (8.9)

On the other hand, the equations for ψn can be easily obtained by substitution
of the series (8.8) into Eq. (8.6). Then

ψ0 = 1, ψ1[µ − λ(1)] = 0,

ψn[µn − λ(n)] +
n−1∑
k=1

G(k, n − k)ψkψn−k = 0, n = 2, 3, . . . ,

where

λ(n) =
∫ 1

0
dsG(s)[1 − an(s) − bn(s)] +

∫ 1

0
ds H (s)[1 − cn(s)],

G(k, l) =
(

k + l
k

) ∫ 1

0
dsG(s)ak(s)bl(s), k, l = 1, 2, . . . .

Now we can use conditions (8.9). First we obtain µ = λ(1) and recall that
µ > 0 by assumption (8.5). Then we note that G(k, l) ≥ 0 for all k, l = 1, 2, . . ..
Therefore

ψn[−µn + λ(n)] ≥ 0 =⇒ λ(n)

n
≥ µ > 0, n = 2, 3, . . . .

On the other hand,

λ(n) ≤
∫ 1

0
ds[G(s) + H (s)] < ∞,

and, therefore, we get a contradiction.
Thus, the following statement has been proven.
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Proposition 8.1. Eq. (8.6), where µ > 0, G(s), H (s) ∈ L+[0, 1], 0 ≤ a(s) ≤
1, 0 ≤ b(s) ≤ 1, 0 ≤ c(s) ≤ 1; s ∈ [0, 1], does not have infinitely differentiable
at x = 0 solutions satisfying conditions (8.9).

Corollary 8.2. The corresponding probability density F(|v|) from (8.7) cannot
have finite moments of all orders.

We can now apply the result to the inelastic Maxwell models (8.3) and
conclude that the similar statement proved in our first paper(1) on that subject
(see,(1) Section 5, Theorem 5.1) is valid not just for almost all, but for all values of
the restitution coefficient e ∈ [0, 1]. Consequently we can revise now a statement
from(3) related to existence of self-similar solutions with finite moments of any
order for a countable set of values of e from the interval set [0, 1] (a possible
logarithmic singularity was missing in the sketch of proof of Theorem 7.2 in(3)).
In fact the solution constructed in Ref. 3 has a finite number of moments for any
0 ≤ e < 1, without exceptions.

On the other hand, the above Proposition 8.1 can be applied to Maxwell
mixtures (8.4). It shows that any physical (i.e. with a positive F(|v|) in Eq. (8.7))
solution of Eq. (8.6) corresponds to the distribution function F(|v|) with a finite
number of even integer moments. The exact solution constructed in Section 5 can
be considered as a typical example.
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